Life Cycle Assessment of
Lithium-ion Batteries

Meg Slattery

ECI 189G Guest Lecture
5/4/2022

C) UCDAVIS

Energy and Efficiency Institute



https://www.washingtonpost.com/graphics/business/batteries/congo-cobalt-mining-for-lithium-ion-battery/?noredirect=on
http://www.mining.com/web/sqm-lithium-mining-needs-least-10b-investment-10-years/

Learning Objectives

After this lecture, you should understand the following topics:
Life cycle assessment (LCA); what it is and how people use it

What the key materials in EV batteries are, how they are produced, and the
social and environmental impacts

Reuse and recycling options for EV batteries
Solutions to make EVs more sustainable from a life cycle perspective
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What is life cycle assessment?

Evaluation of the environmental and economic burdens caused by a
material, product, process, or service throughout its life span.

Includes materials and energy to create the product, and waste and
emissions generated during the process and use

Can be used to compare alternative products and production
pathways, or to identify hotspots in a system
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Life cycle phases
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Context: Local impacts of oil
extraction

Contamination of land, water, air

Negative impacts on public health for people who live near drilling and
refining

Environmental damage renders previous ways-of-life impossible (farming,
fishing)

Conflict

See:
Chevron refinery in Richmond

Displacement of Isle de Jean Charles, Grand Caillou/Dulac, and Pointe-au-Chien
Indian Tribes in Louisiana

Oil spills in the Niger River Delta
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LCA for Electric Vehicles
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Introduction to Li-ion batteries
(LIBS)

Used in consumer electronics, electric vehicles, and energy storage
applications

Electrolyte
Lithium Salt
Dissolved in
Organic, Solvent _
Anode Current Collector Cathode Current Collector
Copper Aluminium
Anode Cathode
Carbon Lithium Metal Oxide

Separator
El
Passivatng Layer

Ellingsen et al. (2013). Life Cycle Assessment of a Lithium-lon B
Vehicle Pack. Journal of Industrial Ecology. 18. 10.1111/jiec.12072.
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Cathode Active Materials




Other Materials
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Cathode and Cell Production

Cathode powder is produced using co-
precipitation (42.6 MJ of heat per kg of
NMC 111) and calcination (25.2 MJ of

electricity per kg)

Cell production consists of slurry
preparation, electrode production, cell
assembly, cell conditioning

Energy required for drying, humidity
control

Impact per-battery depends on facility
throughput
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Use

In-use (i.e., while actively driving) emissions are zero -2 air quality
benefits

GHG emissions from use phase depend on energy source

Benefit estimated to be 12% compared to gasoline if vehicle is fueled using
electricity from natural gas

Emissions are increased if fueled by coal (Hawkins et al., 2013)

Life cycle impacts depend on vehicle and battery lifespan

Global warming benefits are estimated to be 27-29%% better compared to a
gasoline vehicle assuming a 200,000 km lifetime

Reduces to 9-14% assuming a 100,000 km lifetime
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Reuse Opportunity

*  Potential to recover

*  80% of original charge valuable raw materials

capécitv - Applications as
*  Typically occurs after stationary storage, EV
8-10 years

charging stations
*  Extends usable life by
7-10 years

1. 2017 Chevrolet Volt battery; 2. UCD Winery Microgrid Project;
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http://mae.engr.ucdavis.edu/jwpark/DavisSite/pages/BWF-microgrid.html

Reuse

» Batteries can be reused in a vehicle or
as stationary storage

» Repurposed batteries can be used to
store excess solar energy and provide
backup power

» There are several startups in California
and elsewhere in the United States, as
well as in Europe, China, and Japan
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Recycling

v‘v Battery pack or module

v‘v Black mass (cathode and anode materials)

v‘v Metal sulfates (e.g., CoS04, MnS04, NiS04)

UCDAVIS

Copper, aluminum,
plastics, iron

Images from Li-Cycle
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Recycling

Most companies in North America will use
hydrometallurgical recycling process, claim
to recover 90-95% of materials

Economics of recycling are dictated by Outputs of shredding process: Copper,
material value, processing cost, and aluminum, plastics, iron
transportation cost

Lithium has not historically been recovered
commercially

Recovered material must be exported

Majority of recycling to date has taken place
in China and Korea Image of “black mass” from Li-Cycle®
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Recycling

1. American Battery
Technologies
American Manganese
Acend Elements
Interco

Li-Cycle

Lithion

Lithion

Princeton NuEnergy
Recycling Coordinators
10 Redwood Materials
11.Retriev Technologies
12.Glencore
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Recycling Facilities in the US and Canada
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Capacity (Metric Tol

® 1000
® 5000
@ 20000

@ 50000

Status

* QOperating
* Planned
Unknown

Service

* Battery Recyclir
+  Metal Refining



LCA steps

Goal and Scope
Definition

Inventory Interpretation
Analysis

Impact
Assessment
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Goal and Scope

»What product (or products) are you studying?
»What is the functional unit?
»What is the system boundary?

»What is the purpose of your analysis?

»Who is the intended audience?

» Electric vehicle examples:
* Cradle-to-gate of LIB production
* Cradle-to-grave of EV
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Inventory Analysis

“Accounting” stage; purpose is to track inputs and outputs from
system

Create bill of materials and process flow diagram
What components are part of the product you are studying?
What are the processes used to make them?
What are the material and energy outputs at each step?

Life cycle inventory (LCl) is the quantification of relevant inputs and
outputs for a given product system
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Inventory Analysis examples
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Left: LCI from Dai et al., 2019; Right: System Boundary from Casals et al., 2019
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Impact categories
(aggregated into
areas of protection)

Impact Assessment

Damage level

Environmental Midpoint level
» Human health

Interventions (LCI)
« Climate change

¢ Climate change
- Stratospheric ozone depletion ——« Stratospheric ozone depletion
« Particulate matter formation
» Natural resources

« lonizing radiation
-+ Human toxicity
Not yet operationalized '
L ® Single score
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‘« Photochemical ozone formation —e Photochemical ozone formation
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Y * Land use - Land use b ¢ nomica
« Water use
+ Resources use s Cultural herltage
s+ Natural heritage

b Water use
"-._'-_"0 Resources use
» Seabed use « Seabed use
. Noise * Noise

UCDAVIS
Energy and Efficiency Institute

O




Impact Assessment

Climate |Air emissions Local ecology Public
change health
LCA impact  Energy Particulate Water use, Acidification, Human
categories use, GHG matter formation, aquatic eutrophication, land toxicity
emissions SOx/NOXx ecotoxicity use, terrestrial
emissions ecotoxicity
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Example: Dai et al., 2019

Scope
Cradle-to-gate analysis of a 23.5 kWh NMC 111 battery
Functional unit=1 kWh

Impacts: Total energy use, greenhouse gas emissions, SOx, NOx, PM 10
emissions, water consumption

Findings:
Active cathode material, aluminum, energy use for cell production are major
contributors to energy and environmental impact
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System Boundary (Dai et al., 2019)

NiSO; Production ———

Synthetic Graphite Electronic Parts

Production Production
MnSO, Production
Cathode
Coolant Production ———

CoSO; Production ——
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Figure 1. Cradle-to-gate system boundary of LiNij;3Mn1/3C01,30, (NMC111) battery production.
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. . % [ 7/

* 39.1% of GHG emissions . %/ % § ;/: O Electrolyte solvents

* 63.5% of SOx emissions 0% : % % s

. 31.7% of water consumption s | RS N A //

§ =N B2 A luminum
30%
* Aluminum and cell production N\ : B Copper
are also substantial contributors s .

« Aluminum content 10% SRR
responsible for 50.8% of o : ONMC111 powder
water consumption, 18% of Weight ~Total GHG  SOx  NOx  PMIO Water use
total energy use e

e Cell production represen‘ts Figure 2. Cradle-to-gate impact breakdowns and bill of materials (BOM) of 1 kWh NMC111 battery.

Blue denotes material inputs; orange denotes energy inputs for cell production.

19.2% of total energy use
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Factors affecting life cycle impact

Geographic region
What environmental protection measures are in place in material-producing
region? Are emissions captured?

What is the electricity mix where the battery is produced?
What is the electricity mix where the car is driven?

Facility throughput
Shipping distance
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Recycling in LCA

L L
»How do you capture the impact of reuse or b : : : :
recycling in an LCA? Sl RN Ine i 5 W |
* Estimate impact of battery recycling process and f ; | | . | |
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o _ & &K S L R

° WhICh ImpaCtS are StUdIed Fig. 3 | Battery recycling emissions. a-d, Medians and 95% confidence intervals for CO;e emissions per kg less the CO,e offsets from recovered material:

(a,c), and net CO,e emissions avoided by using each recycling process (b,d) for cylindrical (a,b) and pouch battery manufacturing and recycling processe:
(c.d). All processes use US average electricity grid data.
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Conclusion: ICE vs. EV

» Lighter production phase impacts  » Impacts depend on geographic

(vehicle is lighter) region
» High use phase impacts » More challenging end-of-life
» Qverall higher global warming » Lower GHG emissions, higher
potential toxicity

All-Electric Vehicle
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Supply-side solutions

Increase transparency in the F
supply chain through tracking

E.g., Global Battery Passport

Practice free, prior, and
informed consent in material
extraction developments

Require materials to be sourced
from specific regions or using
specific environmental
mitigation measures
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Other solutions
Reduce demand
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Questions?

msslattery@ucdavis.edu
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