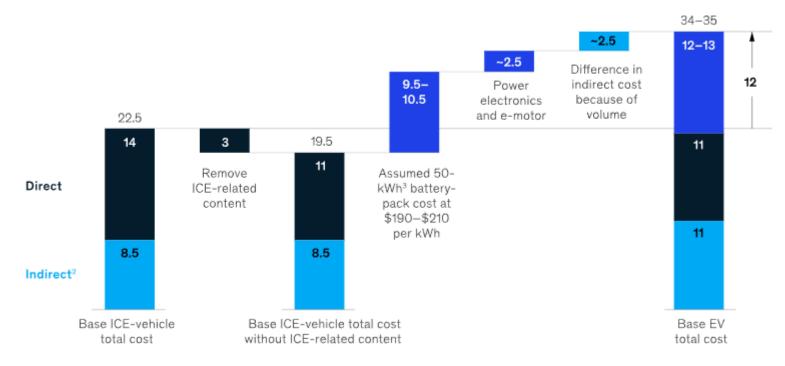
Vehicle production costs & Total cost of ownership

ECI 189G: Lecture 7

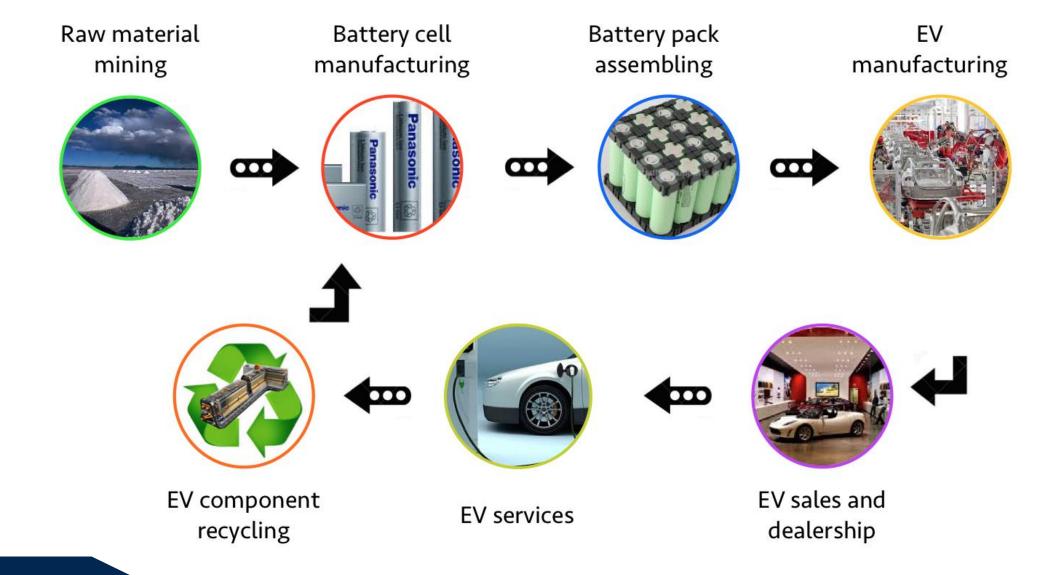
Dan Sperling Alan Jenn Spring 2022

Production costs

Vehicle production costs


- Vehicles have been mass produced for over 100 years, starting with the Ford Model T
- In a heavily competitive market across dozens of automakers, the production has been extremely refined and costs are well understood

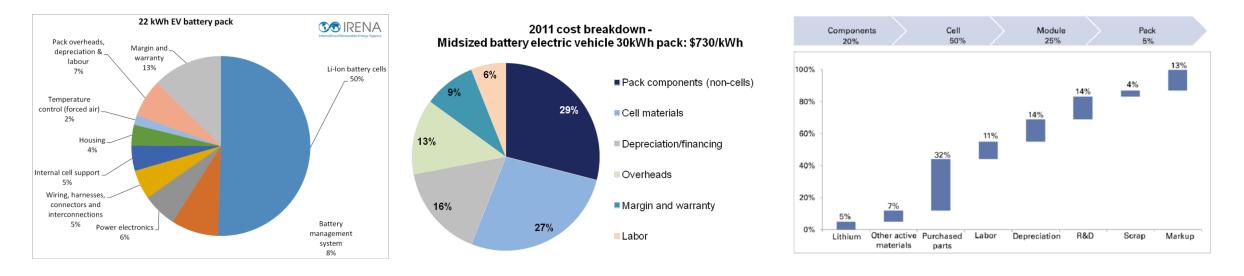
How much do electric vehicles cost?


Cost walk of ICE¹ to electric-vehicle (EV) C-Car in 2019,

estimated average per vehicle, \$ thousand

¹Internal combustion engine. ²Includes average incentive cost of \$2,000. ³Kilowatt-hour; includes battery-management system. Source: Industry experts; UBS; McKinsey analysis

EV Supply Chain



Battery material supply chain

- Much higher reliance on international markets
- Higher risks for some materials:
 - "conflict" minerals linked to child labor
 - Environmental damages and questions of mining sustainability

Battery cost breakdown

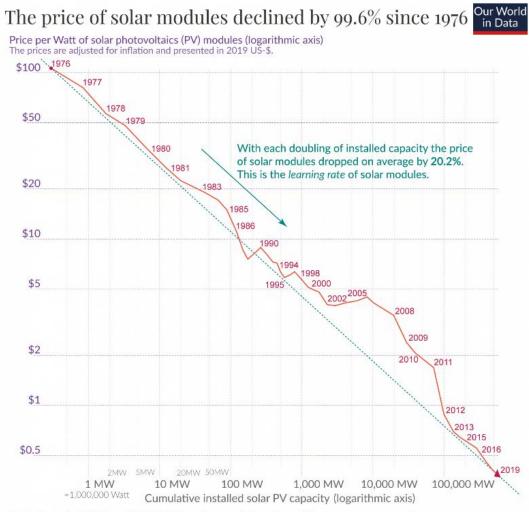
- Details of battery costs are difficult to measure accurately! Often confidential information due to competitive secrecy
- Many components of costs that studies have attempted to estimate—though there is substantial variation in the numbers...

Economies of Scale (the more you build)

- Cost advantages that increase based on the scale of operation
- Common sources of scaling:
 - Purchasing in bulk (discounting in contracts)
 - Managerial specialization
 - Financial scaling (better interest rates when borrowing money)
 - Marketing (spreading costs of advertising)
 - Technological (returns to scale in production)

Learning Curves (the more you build it)

- The idea that technologies become cheaper with increased production: the more a task is performed, the less time is required on each subsequent iteration
 - Labor efficiency workers become more dexterous, mentally more confident, less hesitancy, learning shortcuts
 - Standardization specialization, methods improvements standardization tends to increase efficiency
 - Technology-driven learning automated production technology
 - Better use of equipment higher production leads to better exploitation of equipment
 - Changes in the resource mix
 - Product redesign
 - Use-cost reductions
 - Shared experience effects


Example learning curve calculation

• There are several different ways to calculate a learning curve, but a basic function might look like:

$$Y = aX^{\ln(b)}$$

- Where:
 - Y = cumulative cost per unit
 - a = cost of the first unit produced
 - X = cumulative number of units produced
 - b = learning parameter
- This is a simple exponential decay function!

Example of learning rates for solar PV

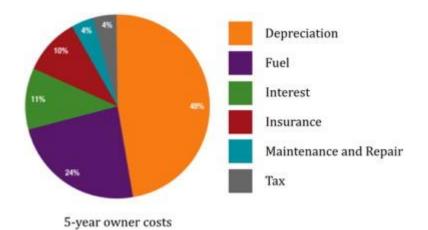
Data: Lafond et al. (2017) and IRENA Database; the reported learning rate is an average over several studies reported by de La Tour et al (2013) in Energy. The rate has remained very similar since then. OurWorldinData.org – Research and data to make progress against the world's largest problems.

Li-Ion Learning Curve

LITHIUM-ION EV BATTERY EXPERIENCE CURVE COMPARED WITH SOLAR PV EXPERIENCE CURVE

100 1976 🔺 Historical price (USD/W, USD/Wh) Crystalline Si PV module 10 1998 2004 2008 1988 2010 2014 m=24.3% H1 2014 Li-ion EV battery m=21.6% pack 0.1 10 100 1,000 10,000 100,000 1,000,000 10,000,000 Cumulative production (MW, MWh) Note: Prices are in real (2014) USD. Source: Bloomberg New Energy Finance, Maycock, Battery University, MIT Michael Liebreich, New York, 14 April 2015 #BNEFSummit @MLiebreich

Bloomberg


Total Cost of Ownership

Total Cost of Ownership (TCO)

- Consider the question: is an EV cheaper or is a gasoline car cheaper? What does this mean?
- Purchasing a new car represents only a portion of the total costs, there are many other cost components of owning a car
- Why do we care about the TCO?
 - Now with different vehicle technologies, comparing just the purchase price doesn't provide an apples-to-apples comparison of the cost of owning a vehicle

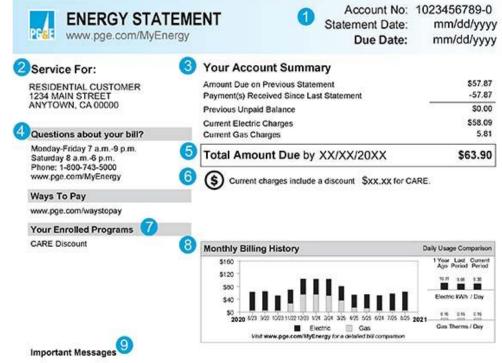
Components of Total Cost of Ownership

- Common cost components to consider in a TCO analysis:
 - Purchase price and associated interest
 - Fuel
 - Insurance
 - Maintenance and repair
- How do you think each of these components compare in gas vs electric cars?

Total cost of ownership for the typical newly bought vehicle in the US

(Consumer Report, 2015).

Vehicle Purchase Price


- There are actually three (!) different prices to keep in mind:
 - Manufacturer's suggested retail price (MSRP)
 - Dealership listing price
 - Transaction price
- Ideally the transaction price would be used for analysis, but this data can be hard to come by
- Tesla doesn't have dealerships! What you see online is what you get, no more negotiation hassles...but they change their MSRP constantly!

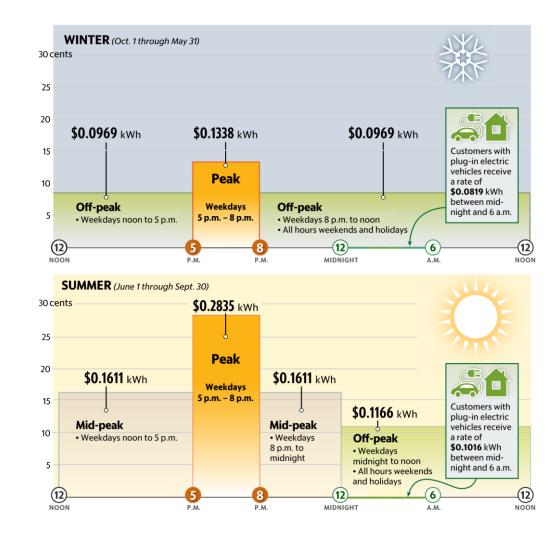
Model 3 V Standard Range Plus	Model 3 V Long Range	Model Y V Long Range	
Price \$36,990	\$45,990	\$48,990	
Range 263 miles (Est.)	353 miles (EPA est.)	326 miles (EPA est.)	

How do we compare costs of different fuels?!

Neighborhood payment centers Did you know it's FREE to pay your PG&E bill at any of our 600 authorized neighborhood payment centers? Payments made by 5 p.m. will post to your PG&E account the same day. Locations and times of operation may be more convenient for your schedule. Call 1-888-743-0011 to find a location near you. VS.

Calculating fueling costs: gasoline

- Let's consider an "average" gas car in the US (about 25 MPG) with gas prices of \$5 per gallon
- How much does it cost to drive per mile?

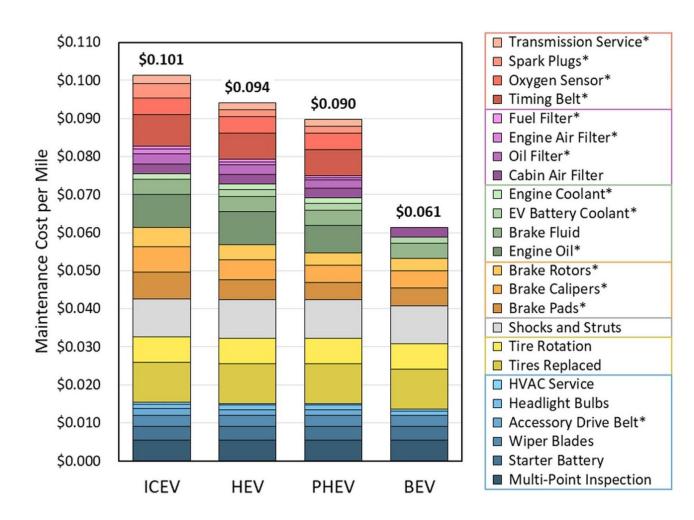

$$\frac{\$5}{\text{gallon of gas}} \times \frac{1 \text{ gallon of gas}}{25 \text{ miles}} = \frac{\$0.20}{\text{mile}}$$

 How much would it cost to drive a more efficient Toyota Prius (about 55 MPG)?

$$\frac{\$5}{\text{gallon of gas}} \times \frac{1 \text{ gallon of gas}}{55 \text{ miles}} \approx \frac{\$0.09}{\text{mile}}$$

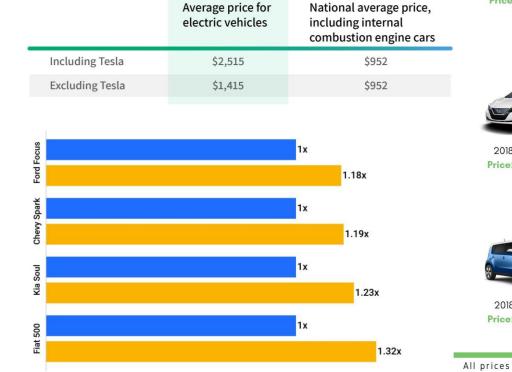
Cost of fueling EV

Choose Your Region CA - Boy Area v							
Pay As You Go Recommended for occasional charging		EVgo Member Recommended for 1x month charging		EVgo Plus TM Recommended for the lowest rates			
Starting at \$0.29 ⁺		Starting at		^{Storting at}			
(per kWh) Rates in CA vary based on Time of Use (TOU)		(per kWh) Rates in CA vary based on Time of Use (TOU)		(per kWh) Rates in CA vary based on Time of Use (TOU)			
session fees >	\$1.99	① session fees ►	\$0.00	● session fees >	\$0.00		
prepaid charging credit •	\$0.00	prepaid charging credit •	\$4.99	prepaid charging credits •	\$0.00		
monthly subscription •	\$0.00	monthly subscription •	\$0.00	monthly subscription >	\$6.99		
• reservations •	\$3.00	• reservations •	\$3.00	• reservations •	\$0.00		
Sign Up		Sign Up		Sign Up			

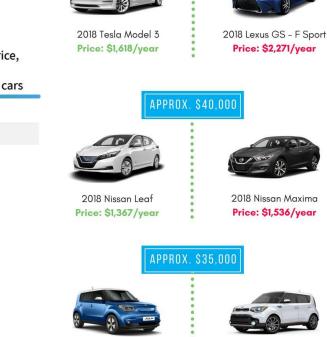

Calculating fueling costs: electricity

- Let's consider an "average" electric car in the US (about .3 kWh/mile) with electricity prices of \$0.30/kWh
- How much does it cost to drive per mile?

 $\frac{\$0.30}{\text{kWh}} \times \frac{0.3 \text{ kWh}}{\text{mile}} = \frac{\$0.09}{\text{mile}}$


Maintenance costs

- Maintenance costs for EVs are generally agreed to be cheaper than gas cars across the board
- EVs do not require any maintenance for parts related to the gasoline engine drivetrain, brakes last longer too due to regenerative braking
- Consider a \$0.04 savings per mile over a lifetime 150,000 miles: a savings of \$6,000!



Insurance costs

- Lots of online insurance calculators to compare prices between gas and electric
- ...but one technology is not clearly cheaper than the other

🔵 Gasoline 😑 Electric

APPROX. \$70,000

2018 Kia Soul EV Price: \$1,464/year 2018 Kia Soul SX Price: \$1,569/year

All prices based on the following assumptions:

- 35 years old living in Oakville, ON
- Home insurance bundled together
- Clean driving record
- Coverages = \$1mil liability, \$1000 deductible for comprehensive and collision, accident forgiveness, and depreciation waiver

Time Discounting

- Preference between the value of consumption today and consumption in the future
- Is money worth more to you now or in the future?

Calculating with discount rates

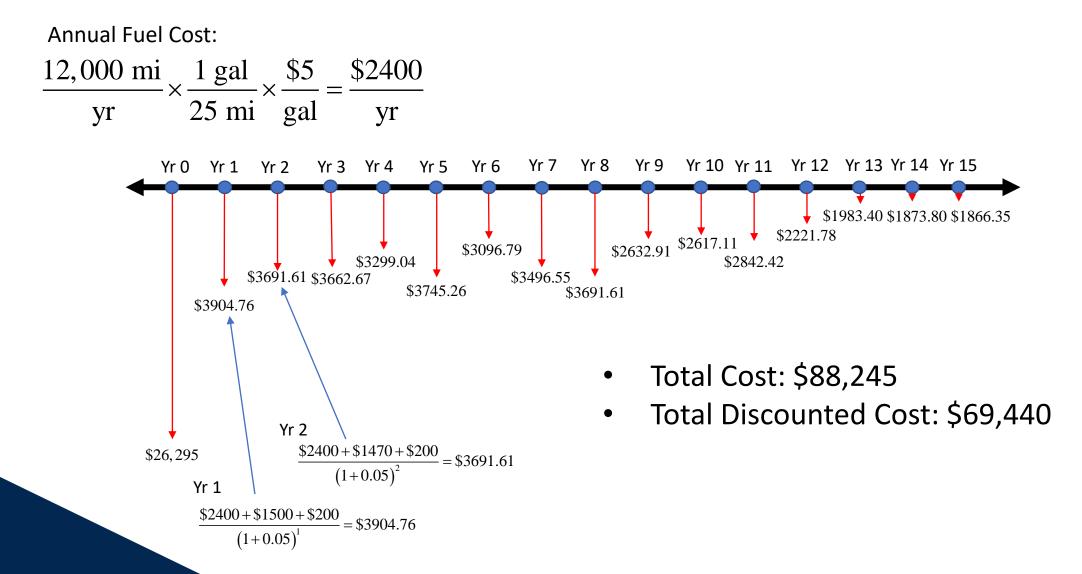
 The present value PV of a quantity of money "C" spent in some future year "n" is given by:

$$PV(C) = \frac{C}{\left(1+i\right)^n}$$

What discount rate should be used?

- There is no one right answer
- Businesses often use 10-15% real discount rates
- Regulated utilities 6%
- Investments in developing countries 15-25%
- The higher the risk the higher the discount rate

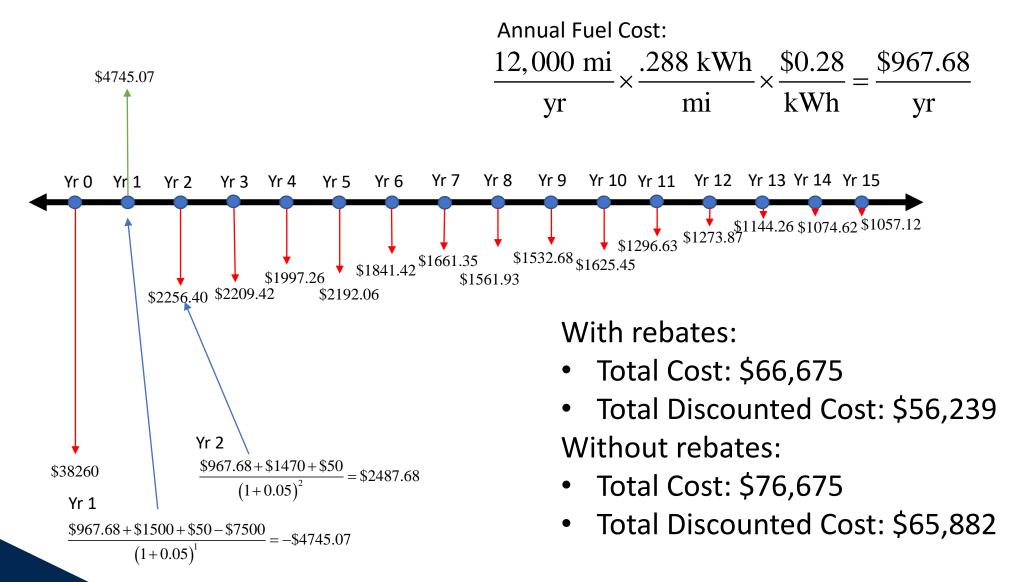
Let's compare:



Volkswagen Tiguan Compact SUV Gasoline Engine Volkswagen ID.4 Compact SUV Battery Electric

Example TCO calculation: gas car

- Relevant Volkswagen Tiguan attributes:
 - \$26,295 MSRP
 - 25 miles per gallon
- Assumptions:
 - Drives 12,000 miles per year
 - Gasoline costs \$5/gallon
 - Insurance rates starting at \$1,500/year dropping \$30/year
 - Discount rate of 5%
- Let's assume the following maintenance schedule
 - Oil change, oil filter, tire rotation: twice a year (\$100 each time)
 - Air and fuel filter: every 3 years (\$200)
 - Brakes, coolant, transmission fluid, power steering fluid: every 5 years (\$800)
 - Spark plugs and timing belt: once over lifetime of vehicle (\$1000)


Example TCO calculation: gas car continued

Example TCO calculation: EV

- Relevant Volkswagen ID.4 attributes:
 - \$40,760 MSRP, \$2500 California rebate (immediate) and \$7500 tax credit (when you file taxes)
 - 28.8 kWh/100 miles
- Assumptions:
 - Drives 12,000 miles per year
 - Electricity price at \$0.28 per kWh
 - Insurance rates starting at \$1,500/year dropping \$30/year
 - Discount rate of 5%
- Let's assume the following maintenance schedule
 - Tire rotation: twice a year (\$150 each time)
 - Air filter: every 3 years (\$100)
 - Brakes: every 5 years (\$400)

Example TCO calculations: EV continued

...so which one is cheaper...?

- The TCO of the VW ID.4 is cheaper than the VW Tiguan both discounted and undiscounted, regardless of the incentive
- But!:
 - What if the driver drove less than 12,000 miles per year?
 - What if gasoline prices were lower?
 - What if electricity prices were higher?
 - What if you had to replace the battery in the EV?
- ...also is the Tiguan the correct counterfactual? Recall that in the early 2000s, many Priuses were actually replacing BMWs, Mercedes, and Porsches!

Buying cars and TCO

- Do buyers calculate TCO when deciding between cars to purchase?
- What other factors might influence a consumer's purchasing decision?