#### **History and market of EVs**

ECI 189G: Lecture 2

Daniel Sperling Alan Jenn Spring 2022

## The first electric vehicle

- 1828 Anyos Jedlik, first electric vehicle
  - EVs fairly popular in the late 1800s, early 1900s
  - Advantage over gasoline diminished by the invention of the electric starter
- First gasoline car wasn't invented until 1870 by Siegfried Marcus (the "Marcus car")



#### The first "modern" electric vehicle

- General Motors produced the EV1 from 1996 to 1999, the first massproduced electric vehicle
- Earlier versions used 16.5-18.7 kWh lead-acid batteries (55 mi), later versions used a 26.4 kWh nickel metal hydride batteries (105 mi)
- Only available through leases, crushed upon takeback by GM— "self-sabotage"?!
- "Who Killed the Electric Car?"



#### **Revenge of the electric car**

- The first\* EV to hit the market was the Tesla Roadster (1<sup>st</sup> gen: 2008 to 2012)
- Built on the Lotus Elise chassis
- First EV sold to use lithiumion batteries, 53 kWh pack (244 mi)



# The first "commercial" electric vehicle

- In December 2010 and January of 2011, the first two commercial markets for mainstream consumers entered the market
- Representing PHEVs: the Chevrolet Volt, a ~40-mile range vehicle
- Representing BEVs: the Nissan Leaf, a ~80-mile range vehicle





# Electric vehicle market growth since 2011

- EVs have experienced steady growth over the last decade
- For reference, the US currently sells ~16m passenger vehicles annually
- Lots of concern over stagnant growth in 2019 and 2020 but 2021 returned to substantial growth

200,000 2,500,000 National Sales: 2021 Sales: 481,226 Quarterly USSales 2,250,000 Cumulative 2011-2021: 2,255,072 175,000 3rd Quarter 2021: 170,954 US Cumulative Sales 2,000,000 California Sales: CA Cumulative (est) 2021 Sales: 187,678 150.000 Cumulative 2011-2021: 991,494 1,750,000 3rd Quarter 2021: 66,672 Quarterly Sales 125,000 1,500,000 1,250,000 100,000 1,000,000 75,000 750.000 50,000 500.000 25,000 250,000 Q2 15 Q4 15 Q2 16-Q4 16-Q2 17 Q2 18 Q2 19 Q2 14 Q4 17 24 13

Electric Vehicle Sales in California and the U.S.

Note: CA sales are 39% of national sales. Data Source: California Energy Commission (2021). Retrieved October 30, 2021 from <u>http://www.energy.ca.gov/zevstats</u>

Q3 2021 Data Update.

#### A sigh of relief for EVs: 2021

#### EV Sales Data (January 2020 to December 2021)

● BMW ● Ford ● General Motors ● Hyundai ● Other ● Stellantis ● Tesla ● Toyota ● Volkswagen ● EV Share of All Light-Duty Sales



7

#### Sales by vehicle model



## Vehicle supply shortages

- During the early stages of the pandemic, automakers canceled orders for semiconductors
- Getting access to semiconductors has since been difficult since they were reallocated to other consumer electronics
- As a result, many automakers have had to stop or limit production of new cars
- Shortages may not end until 2023!



## **EVs by vehicle segment/class**

- Earliest EVs tended to be in smaller vehicle segments
- Increasing segment availability helps appeal to a broader base of customers
- # of cars is increasing but so is diversity in segment, particularly in larger vehicle classes



#### **Trends in range and battery sizes** Tesla Model 3



## **Trends in range and battery sizes** (sales-weighted)



- Both the average battery size and vehicle range have increased over time for BEVs, but the trend has been relatively flat for PHEVs
- Much of the gain in BEVs is due to longer-range Teslas

#### **Tesla dominance**



- Luxury vehicles (Model S and X) have relatively lower sales
- Model 3 and Y each rival the entire volume of other EVs combined

#### **Automaker announcements and pledges**





















































































## **California versus the US**

VELOZ

- US share is ~3% EVs, CA share is ~10% EVs
- California has been consistently selling about half of all EVs in the US over the last decade
- What are the reasons for CA's success with EVs?

Electric Vehicle Sales in California and the U.S.



Note: CA sales are 39% of national sales. Data Source: California Energy Commission (2021). Retrieved October 30, 2021 from http://www.energy.ca.gov/zevstats

Q3 2021 Data Update.

#### **EVs in other states of the US**

| <b>100,000+ 5</b> | 0,000-99,999 | 20,000-49,999  | 10,000-19 | ,999 🧧 2,000-9,999 🗌 | <2,000 |
|-------------------|--------------|----------------|-----------|----------------------|--------|
| California        | 425,300      | Utah           | 11,230    | District of Columbia | 2,360  |
| Florida           | 58,160       | Nevada         | 11,040    | 📃 Idaho              | 2,300  |
| Texas             | 52,190       | Hawaii         | 10,670    | 📒 lowa               | 2,260  |
| Washington        | 50,520       | Michigan       | 10,620    | Vermont              | 2,230  |
| New York          | 32,590       | Minnesota      | 10,380    | Delaware             | 1,950  |
| New Jersey        | 30,420       | Connecticut    | 9,040     | Louisiana            | 1,950  |
| Arizona           | 28,770       | Tennessee      | 7,810     | Maine                | 1,920  |
| Illinois          | 26,000       | Indiana        | 6,990     | Nebraska             | 1,810  |
| Colorado          | 24,670       | Missouri       | 6,740     | Rhode Island         | 1,580  |
| Georgia           | 23,530       | Wisconsin      | 6,310     | Arkansas             | 1,330  |
| Oregon            | 22,850       | South Carolina | 4,390     | Alaska               | 940    |
| Massachusetts     | 21,010       | Oklahoma       | 3,410     | Montana              | 940    |
| Virginia          | 20,510       | Kansas         | 3,130     | Mississippi          | 780    |
| Maryland          | 17,970       | Alabama        | 2,890     | West Virginia        | 600    |
| Pennsylvania      | 17,530       | New Hampshire  | 2,690     | South Dakota         | 410    |
| North Carolina    | 16,190       | Kentucky       | 2,650     | Wyoming              | 330    |
| Ohio              | 14,530       | New Mexico     | 2,620     | North Dakota         | 220    |

SOURCE: U.S. Department of Energy Alternative Fuels Data Center

PAUL HORN / Inside Climate News

#### **California Dominates with EV Registrations**

California remains far out in front as the state with the most electric vehicle registrations, accounting for 42 percent of the 1.02 million light-duty all-electric vehicles on the country's roads as of the end of 2020.

#### **U.S. ELECTRIC VEHICLES**

States ranked by light-duty all-electric vehicle registrations, 2020



## The Norwegian EV market (highest share of new sales)

#### Norway new car sales

Years 2011-2020 in percentage of market per car type

● Electric ● Plug-in hybrid ● Non-plug hybrid ● Petrol only ● Diesel only

| 2011 | 20.1       |         | 75.7    |      |      |      |      |      |   |
|------|------------|---------|---------|------|------|------|------|------|---|
| 2012 | 4.5 28.3   |         |         | 64.3 |      |      |      |      |   |
| 2013 | 5.5 6.7 34 | 4.8     |         |      | 52.8 |      |      |      |   |
| 2014 | 12.5       | 6.8 30. | 7       |      | 48.8 |      |      |      |   |
| 2015 | 17.1       | 5.3 7   | .1 29.6 |      |      | 40.9 |      |      |   |
| 2016 | 15.7       | 13.4    | 11.1    | 29   |      |      | 30.8 |      |   |
| 2017 | 20.9       | 18      | .4      | 12.9 | 24.7 |      |      | 23.1 |   |
| 2018 | 31.2       |         | 17.9    | l.   | 11.1 | 22   |      | 17.8 |   |
| 2019 | 42.4       |         |         | 13.6 | 12   | .3   | 15.7 | 16   |   |
| 2020 | 54         |         |         |      | 20   |      | 9    | 8    | 9 |

## The Chinese EV market (sells the most in absolute amounts)



19

#### **Getting EVs into everyone's hands**

- 4% of the households are responsible for almost one third of the market in 2010-2012
- Up to 15% of PEV buyers are on their second PEV



#### **Used Vehicle Market**

- Unfortunately, not much is known about the used vehicle market in comparison to new vehicles being sold
- While some used vehicles are tracked in similar channels to new cars, some avenues are much harder to track:
  - Craigslist, Facebook, eBay, etc.
- This is currently a rich area of study as we move out of the early-adopters stage and researchers seek to understand how EVs may trickle down to broader populations through the used vehicle market

# Leasing vehicles and the used market

- Leases are an alternative to buying a vehicle, instead you "rent" the vehicle for 2-3 years
- For EVs, leases are an especially attractive proposition that allows consumers who may be less confident in the technology to "try it out" first
- After a lease, the owner can choose to buy the vehicle, otherwise it goes back to the dealership to enter the market as a used car

#### **Borrowed Wheels**

When it comes to plug-in vehicles, most drivers lease, rather than buy.

All vehicles 📕 BMW i3 📘 Ford C-Max Energi 📃 Chevrolet Bolt EV 📗 Nissan Leaf



#### **Residual values and EVs**

- Residual values describes the "leftover" value of the vehicle after a leaseterm—it also acts proxies for how attractive a vehicle is on the used market
- EVs have an artificially low residual value due to incentives
- Consider the 2012 Volt in 2015 (after 3-year lease)
  - Before incentives, the residual value is 46%
  - Accounting for incentives the residual value is 56%



## **EVs: Equity and access**

- Technology shifts to address climate change are important, but if we force everyone to buy an EV, this could place financial burdens and/or be completely untenable for some people!
- Some barriers facing disadvantaged communities:
  - Higher upfront costs of vehicle purchase
  - Access to home charging infrastructure (apartments vs homes)
  - Access to public charging infrastructure
  - Availability of vehicles in local dealerships
  - Lack of knowledge and familiarity with new technology

## **Does policy support help?**



Used New

 While buyers of used vehicles tend to have lower income, early stages of the EV market indicate that used buyers are still very wealthy!

#### Accessibility for lower-income EV owners

- Many EV chargers can only be accessed through memberships and smart phone app access
- Regulatory pressure has led to requirements by charging providers to include credit card readers (bypassing smart phone requirements)

