Final Class Project

- Project proposal
	- Due May $13th$ at the end of the day
	- Worth 20% of the course project
	- Can work in groups of 2-3 people, only one submission required per group
	- Guidelines available on Canvas
- Contents:
	- Topic What lecture's topic will you be examining?
	- Introduction provide background information and motivation on the project topic
	- Research questions what questions do you want to answer about your topic? Or what questions do you think need answering regarding your topic?
	- Related studies provide a list of potential papers to review related to your topic

Electricity grid and usephase emissions

ECI 189G: Lecture 11

Dan Sperling Alan Jenn Spring 2022

What happens when you plug in an electric vehicle?

The electric power grid

Electricity from turbines

Electricity generation from an electric turbine

- Remember how we generate electricity? Translating kinetic energy from spinning a turbine to produce electricity
- Nearly all electricity in the world is produced this way—whether the source is coal, natural gas, nuclear, wind, hydro (okay, not solar…)

Steam turbines

- Coal is combusted to heat water—as steam it spins a turbine to produce electricity
- The thermodynamic cycle for a steam turbine is known as a Rankine Cycle (about 35% efficient in practice)

Gas turbines and combined cycle

- Natural gas turbines combust the gas directly in the turbine to cause it to spin—thermodynamic cycle is called the Brayton Cycle (about 40% efficient)
- Heat from the Brayton Cycle can be combined with a steam turbine to increase efficiency (known as a combined cycle plant)

Fuels for combustion

Natural Gas

*Impurities include: carbon dioxide, hydrogen sulfide, water vapor, oil, nitrogen, hydrates, hydrocarbons (ethane, propane, butane, pentane)

Fossil fuel combustion

$$
C_nH_m + \left(n + \frac{m}{4}\right)O_2 \to nCO_2 + \left(\frac{m}{2}\right)H_2O
$$

• Natural gas combustion is fairly straightforward:

 $\text{CH}_4 + 2\text{O}_2 \rightarrow \text{CO}_2 + \text{H}_2\text{O}$

But impurities release nitrogen oxides (NO_x) , carbon monoxide (CO) , carbon dioxide (CO₂), methane (CH₄), nitrous oxide (N₂O), volatile organic compounds (VOCs), and trace amounts of sulfur dioxide (SO_2) and particulate matter (PM)

• Coal combustion is the opposite of straightforward.

Impurities include solids: fly ash, flue-gas desulfurization materials, bottom ash, and boiler slag and gases: all of the compounds as seen in natural gas combustion with significantly higher sulfur dioxide, also contains mercury, arsenic, and heavy metals

Nuclear plant

• Mostly the same as coal plants, except water is heated via nuclear fission reactions within a reactor

Nuclear fission

$$
{}_{92}^{235}U + {}_{0}^{1}n \rightarrow {}_{56}^{139}Ba + {}_{36}^{94}Kr + 3{}_{0}^{1}n
$$

- Uranium-235 can be bombarded with neutrons to produce the above nuclear fission (splitting) reaction
- The reaction produces a tremendous amount of energy and 3 more neutrons—which can be used to produce a chain reaction
- 1 kg of Ur-235 can produce 24 GWh of energy! (Several million times more energy dense than coal)

Wind turbines

- Maximum theoretical efficiency (Betz's Law): 59.3%
- Average efficiency: 35% -45%
- Height of turbine needed because wind speed is higher at greater elevation from the ground
- Diameter of modern -day turbines can exceed the length of a football field!

Hydro turbines

- Hydro turbines exploit the potential energy stored in water due to the height differential between the top and bottom of the dam
- A variety of turbine designs exist depending on the flow rate and height difference of water flowing through the turbine

Electricity from solar photovoltaic panels

Power generators in the US

Generator Capacity (MW)

- 1000
- 2000
- 3000

4000

Fuel Type

- **Biomass**
- Hydro
- **NaturalGas**
- Nuclear
- Other
- Solar
- Wind

Dispatch game

- Everyone gets a power plant that can produce some amount of power (**capacity**) and has a corresponding **fuel price** (each unit of power you sell costs you this much to generate)
- Your goal is to *make as much money as possible*, you do this by selling as much power as you can produce
- You cannot communicate with other people! (anti-monopoly rules!)
- I am the independent system operator (ISO), I choose which power source to buy from

Dispatch game: Auction rules

- 1. Write down a price on a piece of paper, this represents your bid into the market.
- 2. I need to provide **X** amount of electricity to fulfill demand, I will choose to turn on the power plant that provides me power at the cheapest price.
- 3. I will continue turning on power plants until I get all the power I need.
- 4. Once I have fulfilled all the demand, all power plants get paid **the amount of the** *highest* **bid into the auction**.

Dispatch of electricity

- Turn on generators from left to right until you have enough electricity to meet all demand
- The money paid to any generators that "turn on" is based on what the system pays the "last" generator to be dispatched
- Generators bid into the system based on how much it costs them to produce electricity

An example 1 week dispatch curve in LA

- Fluctuations day to day correspond to changes in demand for electricity over the course of a day
- High usage of solar (day) and wind (night) in the region
- Large fluctuations with natural gas generation to deal with intermittency

Major transmission lines in the US

About This Map »

Click on the links below to switch layers on and off.

EXISTING LINES

 $\sqrt{345-499}$ kV $\sqrt{7}$

 $\overline{?}$

- $\sqrt{500-699}$ kV
- → 700-799 kV $\overline{\mathcal{L}}$
- → 1,000 kV (DC) ¹

PROPOSED LINES

- \rightarrow New 765 kV ?
- **M4 AC-DC-AC Links** 2

INTERCONNECTIONS

Major sectors of the U.S. electrical grid

- Eastern
- Western
- Texas (ERCOT)

Locational factors of charging

Timing factors of charging

- In Los Angeles:
	- If a vehicle charges in the middle of the day, the proportion of power from solar is substantially higher
	- If a vehicle charges at nighttime, the proportion of power from natural gas is substantially higher
- This effect will differ depending where in the country you are charging

Calculating emissions from EVs

• It's 3 PM in Davis, I charge my car $@$ L2 for 1 hour.

Calculating emissions from EVs

• It's 3 PM in Davis, I charge my car $@$ L2 for 1 hour.

What is smart charging?

For a single car: In aggregate:

Daytime Nighttime

- Why would we do this? Shifting charging Charging behavior.
	- Charge when its cheaper
	- Charge when its cleaner
	- Reduce stress on grid infrastructure (capacity, ramping, etc)

Example schematic of managed charging for demand response

Challenges with smart charging

- Technical challenges:
	- What sort of external "signals" would be used and how would this be communicated to the vehicle?
	- Which factors should smart charging try to address? All of the above?
	- Cooperation among different automakers to standardize procedures
	- Hardware to support managed charging
- Behavioral challenges:
	- How will customers be convinced to participate?
	- Taking control of charging out of the customers hands!

What is V2G?

• V2G stands for "vehicle-to-grid": this involves any scheme where electric vehicles *discharge* electricity back to the grid

The electric vehicle can be thought

Example of energy arbitrage with V2G

Sources

ISO 15118 Protocol

Tremendous potential for storage

- California plans to have 5 million EVs on the road by 2030. Let's roughly assume 50 kWh batteries per vehicle on average.
	- 1% of all EVs plugged into DC fast chargers discharging = 2.5 GW instantaneous capacity
	- 50% of all EVs plugged into L2 discharging = 16.5 GW instantaneous capacity
	- Total battery capacity: 250 GWh
- For reference:
	- CA currently has ~1.4 GW storage capacity
	- Peak load in California: ~50 GW
	- Daily electricity usage in California: ~700 GWh